TETROFOR - Remote sensing of tropical vegetations
Keywords
To characterise the role of natural tropical vegetation as a reservoir of biodiversity and an essential component in the regulation of biogeochemical (water, carbon) and energy cycles on a global scale.
This theme brings together research actions that implement remote sensing tools and ad hoc methodological developments.
Remote sensing approaches are generally based on the use of passive or active signals of high resolution (temporal, spatial or spectral). LiDAR (terrestrial or airborne) plays a predominant role among these tools, thanks to the unique link it establishes between tree architecture and stand organisation, as well as its potential for quantifying carbon acquisition and allocation. Our approaches are also based on (i) mapping of tropical forests at different scales (local, regional) using multi-sensor, multi-temporal and multi-spatial resolution approaches, (ii) canopy modelling (based on archi-FSPM models or 3D digitisation) and (iii) modelling of radiative transfer, both from a functional (photosynthesis, allocation, etc.) and instrumental (sensor sensitivity, cal/val) perspective.
We are involved in research projects, impact studies, development studies, or sensitivity studies, through services for public or private partners. This involves producing vegetation maps or providing field data or compatible population models for radiative transfer modelling. Our main projects are in Central Africa (LMI Dycofac) and in French Guiana (Labex CEBA) but also in New Caledonia, India and Thailand. Access to ground truth data relies on plot networks developed in partnership with local institutions. We regularly mobilise close remote sensing equipment (6 drones, 5 qualified pilots, 3 TLS scanners, 1 UAV-LS scanner, DGNSS systems), a spectroradiometer, canopy climbing equipment and trained climbers. We also have an archive of airborne and/or satellite images in our regions of intervention allowing us to develop analyses of cover dynamics.
Acronym | Title | Duration |
---|---|---|
ADMIRE | Partenariat pour l’Analyse des DynaMIques de REforestation et de la résilience forestière (ADMIRE) Project PI: Philippe BIRNBAUM | 2021 - 2024 |
AFRIFIRE | Déterminants et impacts du régime des feux en Afrique tropicale Project PI: Charly FAVIER (ISEM) / Maxime REJOU-MECHAIN | 2021 - 2022 |
BIOMASS | BIOMASS Project PI: Ludovic VILLARD (CESBIO) | 2021 - 2022 |
CartoDiv-DendroLidar | Reconnaissance spécifique et cartographie des arbres de la canopée en forêt tropicale ET télédétection individu centrée pour l'évaluation de la ressource en bois d'œuvre en Guyane française Project PI: Grégoire VINCENT | 2017 - 2021 |
DESSFOR | Degraded Stable States in Tropical Forests Project PI: Maxime REJOU-MECHAIN | 2021 - 2024 |
ForestScan | New technology for characterising forest structure and biomass at ‘Super Sites’ for EO cal/val across the tropics Project PI: Mat DISNEY (UCL) | 2021 - 2023 |
Phenobs | Towards a phenology observatory in French Guiana to study climate-vegetation feedbacks and the diversity of plant strategies Project PI: Nicolas BARBIER | 2020 - 2022 |
PROFEAAC | PROmouvoir et Formaliser l’Exploitation Artisanale du bois d’œuvre en Afrique Centrale par une approche multi-scalaire : gestion territorialisée de la ressource, gouvernance de la filière, promotion des demandes de sciages légaux Project PI: Guillaume LESCUYER (CIFOR - Cirad) | 2019 - 2023 |
Reliques | Fragmentation des forets sur substrats ultramafiques en Nouvelle Calédonie Project PI: Philippe BIRNBAUM / Nicolas BARBIER | 2019 - 2022 |
Tall Trees | A 3D perspective on the effects of topography and wind on forest height and dynamics Project PI: David COOMES (Cambridge University) | 2019 - 2023 |
BADOURDINE Colette 2019 - 2022. Mapping tropical forest diversity from multi- and hyper-spectral imagery. Ecole doctorale : GAIA / Université de Montpellier. Dir : PELISSIER Raphaël / Co-dir. : VINCENT Grégoire
BALL James 2019 - 2023. Utilisation de la télédétection pour comprendre la phénologie foliaire et la productivité des forêts tropicales. Ecole doctorale : University of Cambridge / University of Cambridge. Dir : COOMES David / Co-dir. : VINCENT Grégoire
HUERTAS GARCIA Claudia 2018 - 2021. Le sujet de doctorat est le suivant :
MOFACK Gislain 2018 - 2021. Ses recherches portent sur la prise en compte des interactions et de la plasticité phénotypique des arbres dans l'estimation de la biomasse et du stock de carbone, à l'aide de l'outil LiDAR terrestre.. Ecole doctorale : Sciences de la Vie, Santé et Environnement / Université de Yaoundé I, Cameroun. Dir : COUTERON Pierre / Co-dir. : SONKE Bonaventure
SAGANG TAKOUGOUM Le-Bienfaiteur 2018 - 2021. Etude de la dynamique du contact forêt- savane dans un écosystème de savane tropicale boisée de la région du Centre Cameroun. Université de Yaoundé I, Cameroun. Dir : BARBIER Nicolas / Co-dir. : SONKE Bonaventure
PhD
2021
Theses
- auteur
- Anthony Laybros
- titre
- Reconnaissance spécifique et cartographie des arbres de la canopée en forêt tropicale en Guyane française par fusion de données lidar et hyperspectrales appliquées aux besoins de la gestion forestière
- article
- Biodiversité et Ecologie. Université de Montpellier, 2021. Français
- Accès au bibtex
-
Scientific papers
2021
Journal articles
- ref_biblio
- Nidhi Jha, Nitin Kumar Tripathi, Nicolas Barbier, Salvatore Virdis, Wirong Chanthorn, et al.. The real potential of current passive satellite data to map aboveground biomass in tropical forests. Remote Sensing in Ecology and Conservation, In press, ⟨10.1002/rse2.203⟩. ⟨hal-03193170⟩
- Accès au texte intégral et bibtex
-
- ref_biblio
- C. Vancutsem, F Achard, J.-F. Pekel, Ghislain Vieilledent, S. Carboni, et al.. Long-term (1990-2019) monitoring of forest cover changes in the humid tropics. Science Advances , American Association for the Advancement of Science (AAAS), 2021, 7 (10), ⟨10.1126/sciadv.abe1603⟩. ⟨hal-03163130⟩
- Accès au texte intégral et bibtex
-
2020
Journal articles
- ref_biblio
- Clément Bourgoin, Julie Betbeder, Pierre Couteron, Lilian Blanc, Hélène Dessard, et al.. UAV-based canopy textures assess changes in forest structure from long-term degradation. Ecological Indicators, Elsevier, 2020, 115, pp.106386. ⟨10.1016/j.ecolind.2020.106386⟩. ⟨hal-02566581⟩
- Accès au texte intégral et bibtex
-
- ref_biblio
- Tiphaine Chevallier, Maud Loireau, Romain Courault, Lydie Chapuis-Lardy, Thierry Desjardins, et al.. Paris Climate Agreement: Promoting Interdisciplinary Science and Stakeholders’ Approaches for Multi-Scale Implementation of Continental Carbon Sequestration. Sustainability, MDPI, 2020, 12 (17), pp.6715. ⟨10.3390/su12176715⟩. ⟨hal-02920103⟩
- Accès au texte intégral et bibtex
-
- ref_biblio
- Fabian Jörg Fischer, Fabian Fischer, Nicolas Labrière, Grégoire Vincent, Bruno Hérault, et al.. A simulation method to infer tree allometry and forest structure from airborne laser scanning and forest inventories. Remote Sensing of Environment, Elsevier, 2020, 251, pp.112056. ⟨10.1016/j.rse.2020.112056⟩. ⟨hal-03005989⟩
- Accès au texte intégral et bibtex
-
- ref_biblio
- Jens Kattge, Gerhard Bonisch, Sandra Díaz, Sandra Lavorel, Iain Colin Prentice, et al.. TRY plant trait database – enhanced coverage and open access. Global Change Biology, Wiley, 2020, 26 (1), pp.119-188. ⟨10.1111/gcb.14904⟩. ⟨hal-02434220⟩
- Accès au texte intégral et bibtex
-
- ref_biblio
- Moses Libalah Bakonck, Vincent Droissart, Bonaventure Sonké, Nicolas Barbier, Gilles Dauby, et al.. Additive influences of soil and climate gradients drive tree community composition of Central African rainforests. Journal of Vegetation Science, Wiley, 2020, 31 (6), pp.1154-1167. ⟨10.1111/jvs.12918⟩. ⟨hal-02885165⟩
- Accès au bibtex
-
- ref_biblio
- Marcos Longo, Sassan Saatchi, Michael Keller, Kevin Bowman, António Ferraz, et al.. Impacts of Degradation on Water, Energy, and Carbon Cycling of the Amazon Tropical Forests. Journal of Geophysical Research: Biogeosciences, American Geophysical Union, 2020, 125 (8), ⟨10.1029/2020jg005677⟩. ⟨hal-02948755⟩
- Accès au texte intégral et bibtex
-
- ref_biblio
- Olivier Martin-Ducup, Pierre Ploton, Nicolas Barbier, Stephane Momo Takoudjou, Gislain Ii Mofack, et al.. Terrestrial laser scanning reveals convergence of tree architecture with increasingly dominant crown canopy position. Functional Ecology, Wiley, 2020, 34 (12), pp.2442-2452. ⟨10.1111/1365-2435.13678⟩. ⟨hal-02943974⟩
- Accès au bibtex
-
- ref_biblio
- Stephane Momo Takoudjou, Pierre Ploton, Olivier Martin-Ducup, Romain Lehnebach, Claire Fortunel, et al.. Leveraging Signatures of plant functional Strategies in Wood Density Profiles of African Trees to correct Mass estimations from terrestrial Laser Data. Scientific Reports, Nature Publishing Group, 2020, 10 (1), pp.2001. ⟨10.1038/s41598-020-58733-w⟩. ⟨hal-02470476⟩
- Accès au texte intégral et bibtex
-
- ref_biblio
- Pierre Ploton, Frédéric Mortier, Nicolas Barbier, Guillaume Cornu, Maxime Réjou-Méchain, et al.. A map of African humid tropical forest aboveground biomass derived from management inventories. Scientific Data , Nature Publishing Group, 2020, 7 (1), ⟨10.1038/s41597-020-0561-0⟩. ⟨hal-02929027⟩
- Accès au texte intégral et bibtex
-
- ref_biblio
- Pierre Ploton, Frédéric Mortier, Maxime Réjou-Méchain, Nicolas Barbier, Nicolas Picard, et al.. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nature Communications, Nature Publishing Group, 2020, 11 (1), ⟨10.1038/s41467-020-18321-y⟩. ⟨hal-02936567⟩
- Accès au texte intégral et bibtex
-
- ref_biblio
- Le Bienfaiteur Sagang Takougoum, Pierre Ploton, Bonaventure Sonké, Hervé Poilvé, Pierre Couteron, et al.. Airborne Lidar Sampling Pivotal for Accurate Regional AGB Predictions from Multispectral Images in Forest-Savanna Landscapes. Remote Sensing, MDPI, 2020, 12 (10), pp.1637. ⟨10.3390/rs12101637⟩. ⟨hal-02619063⟩
- Accès au texte intégral et bibtex
-
- ref_biblio
- Robert Schneider, Rafael Calama, Olivier Martin-Ducup. Understanding Tree-to-Tree Variations in Stone Pine (Pinus pinea L.) Cone Production Using Terrestrial Laser Scanner. Remote Sensing, MDPI, 2020, 3D Forest Structure Observation, 12 (1), pp.173. ⟨10.3390/rs12010173⟩. ⟨hal-02459699⟩
- Accès au texte intégral et bibtex
-
- ref_biblio
- Di Wang, Stephane Momo Takoudjou, Eric Casella. LeWoS: A universal leaf‐wood classification method to facilitate the 3D modelling of large tropical trees using terrestrial LiDAR. Methods in Ecology and Evolution, Wiley, 2020, 11 (3), pp.376-389. ⟨10.1111/2041-210X.13342⟩. ⟨hal-02516966⟩
- Accès au bibtex
-
- ref_biblio
- Ben Weinstein, Sergio Marconi, Mélaine Aubry‐kientz, Gregoire Vincent, Henry Senyondo, et al.. DeepForest: A Python package for RGB deep learning tree crown delineation. Methods in Ecology and Evolution, Wiley, 2020, 11 (12), pp.1743-1751. ⟨10.1111/2041-210X.13472⟩. ⟨hal-03073497⟩
- Accès au bibtex
-
- JB Feret (Tetis MPL),
- D Coomes (Cambridge U),
- S Saatchi (NASA JPL),
- R Valbuena (Wales University),
- J Chanussot (GIPSA Grenoble),
- M Disney (UCL),
- V Deblauwe (CBI),
- B Sonké (LaboSYstE, ENS-Univ Yaoundé I),
- JP Gastellu Etchegorry, T Le Toan (Cesbio),
- H Poilvé (Airbus DS),
- M Herold (WUR),
- T Stévart (MBG),
- S Gourlet Fleury, E Forni (CIRAD Forêts et Sociétés).